
On the semantics of root syntax:
Challenges and directions

Chenchen (Julio) Song

School of International Studies
Zhejiang University

Logic and Engineering of Natural Language Semantics 18
Japan (online), Nov 13–15, 2021

Song 2021 (ZJU) On the semantics of root syntax LENLS18 1 / 45

Overview

1 Introduction

2 Challenges for formal semantics

3 Possible directions

4 A categorical model

5 Monad

6 Summary

Song 2021 (ZJU) On the semantics of root syntax LENLS18 2 / 45

Overview

1 Introduction

2 Challenges for formal semantics

3 Possible directions

4 A categorical model

5 Monad

6 Summary

Song 2021 (ZJU) On the semantics of root syntax LENLS18 3 / 45

Classical root syntax

Root syntax: a popular trend in current generative syntax
Halle & Marantz (1993 et seq.): Distributed Morphology (DM)
Borer (2005, 2013): Exoskeletal Syntax (XS)
Chomsky (2019):

If you accept—as I am doing here—the Hagit Borer–Alec Marantz theory of
root categorization, which I think is pretty strongly motivated, the roots in
the lexicon are independent of category.

Theory-neutral definition
A root is a purely lexical unit in syntactic derivation that is void of categorial
information. It only acquires a syntactic category (and thereby a categorized
interpretation) by externally merging with one.

Example (DM):

N

n √DOG

Þ 〈/dOg/, ‘a domestic mammal. . . ’〉

Song 2021 (ZJU) On the semantics of root syntax LENLS18 4 / 45

“syntax all the way down”

Þ〈−,−〉

Classical root syntax

Root syntax: a popular trend in current generative syntax
Halle & Marantz (1993 et seq.): Distributed Morphology (DM)
Borer (2005, 2013): Exoskeletal Syntax (XS)
Chomsky (2019):

If you accept—as I am doing here—the Hagit Borer–Alec Marantz theory of
root categorization, which I think is pretty strongly motivated, the roots in
the lexicon are independent of category.

Theory-neutral definition
A root is a purely lexical unit in syntactic derivation that is void of categorial
information. It only acquires a syntactic category (and thereby a categorized
interpretation) by externally merging with one.

Example (DM):

N

n √314

Þ 〈/dOg/, ‘a domestic mammal. . . ’〉

Song 2021 (ZJU) On the semantics of root syntax LENLS18 4 / 45

“syntax all the way down”

Þ〈−,−〉 (Harley 2014)

Generalized root syntax (GRS)

Core features:
ultimate lexical decomposition
complete separation of grammatical and idiosyncratic information
super fine-grained, “subatomic” analysis

Limit: confined to the lexical domain (basically a morphological tool)

Generalized root syntax (Song 2019)
Extends root syntax into the grammatical domain and thereby makes roots
(or root-oriented thinking) into a more general syntactic tool.

Core motivation: lexical idiosyncrasy in the grammatical domain
Acedo-Matellán & Real-Puigdollers (2019): different details, same idea

Song 2021 (ZJU) On the semantics of root syntax LENLS18 5 / 45

Semigrammaticality

GRS aims to give content and semigrammatical words a unified analysis.

Not all vocabulary items in human language are purely lexical or
grammatical. There are also many in-betweens (see Song 2021 for a typology).

(1) a. [Italian]La
the

pasta
pasta

va
PASSobligatory

/ viene
PASSregular

mangiata
eaten

subito.
immediately

“Pasta must be / is eaten immediately.” (Cardinaletti & Giusti 2001:392)

b. [Mandarin]yı̄
one

wèi
CLFrespectful

/ míng
CLFprofessional

lǎoshı̄
teacher

“a teacher” (Song 2019:125)

c. [Vietnamese]Em/Tao
1SG.N/V

không
NEGneutral

/ đéo
NEGvulgar

cần
need

anh/mày
2SG.N/V

giúp.
help

“I don’t need your help.” (Li Nguyen, p.c.)

+Hallmark: grammatical function + lexical coloration

Song 2021 (ZJU) On the semantics of root syntax LENLS18 6 / 45

åencyclopedic content, speaker
attitude, register conditioning, etc.

logical-compositionalö conventional-idiosyncraticö

þ

category

þ

root

Overview

1 Introduction

2 Challenges for formal semantics

3 Possible directions

4 A categorical model

5 Monad

6 Summary

Song 2021 (ZJU) On the semantics of root syntax LENLS18 7 / 45

Roots in formal semantics: Status quo

N/A

Song 2021 (ZJU) On the semantics of root syntax LENLS18 8 / 45

Roots in formal semantics: Status quo

Mainstream formal semantic studies do not decompose bare words.
Some theories do pursue lexical decomposition.

— e.g., neo-Davidsonian event semantics

But they generally leave stems or morphological roots intact.

Example:
(2) Jones buttered the toast. (Landman 2000:1–2)

∃e[BUTTER(e)∧ AGENT(e) = j∧ THEME(e) = t]

Song 2021 (ZJU) On the semantics of root syntax LENLS18 9 / 45

þ

bare verb meaning
(BUTTER : event→ t) � already categorized

What about Frege’s Principle?

Syntax :: [V v √BUTTER]
mapping−−−−→ ? :: Semantics

Challenges of root syntax for formal semantics

1 How to logically represent roots?
2 How to mirror the extreme vagueness of roots in the model?
3 How to compose roots and categories?
4 How to keep up with generalized root syntax?

Song 2021 (ZJU) On the semantics of root syntax LENLS18 10 / 45

Challenge 1 (C1)

How to logically represent roots?

Bare word meanings correspond to (at least) categorized roots.
JdogK = λx.dog′(x), where x is an entity-typed variable
JspeakK = λe. speak′(e), where e is an event-typed variable

Root categorization schema: [X X √] (X is a category, √ is a root)

What do X and √ respectively denote?

[Root] meaning seems too elusive to be pinned down. This is because . . .
something so radically underspecified cannot even convey the distinction between
argument and predicate. What meaning can a root have that is not yet specified as
an entity-, state- or process-referring expression? (Acquaviva 2009:4)

Song 2021 (ZJU) On the semantics of root syntax LENLS18 11 / 45

Challenge 2 (C2)

How to mirror the extreme vagueness of roots in the model?

In model-theoretic semantics, bare predicates are modeled by named
sets of individuals.

JdogK = { x | x is a dog }

JspeakK = { e | e is a speaking event }

But in a model of root syntax, such named sets can no longer be taken
for granted. They must be somehow reconstructed.
This is reminiscent of the anti-extensionalist view of lexical items:

[A]n extensionalist semantic approach, where basic terms of the semantic
representation are ultimately defined by what they are true of . . . cannot possibly
shed much light on those aspects of lexical semantic competence based on
oppositions in conceptualization rather than in distinct extensions: consider again
home vs. house, or broad vs. wide, or use vs. utilize, to say nothing about
notorious problematic cases like time, air, or god. (Acquaviva 2014:281)

Song 2021 (ZJU) On the semantics of root syntax LENLS18 12 / 45

Challenge 3 (C3)

How to compose roots and categories?

In other words, what is the logical relationship between the root node
and the category node?

1 Function-argument? ⇔ head-complement
2 Coordination? ⇔ head-head
3 Modification? ⇔ head-adjunct

Both ¬ and ® have syntactician followers, while is prima facie more natural
semantically (e.g., Kelly 2013). It is syntactically less desirable, though, due to
the built-in symmetry (and also for reasons like labeling; Chomsky 2013).

+Desideratum: a neater mapping between syntax and semantics

Song 2021 (ZJU) On the semantics of root syntax LENLS18 13 / 45

X

X √

Challenge 4 (C4)

How to keep up with generalized root syntax?

Suppose GRS is on the right track, whatever compositional semantics
we assign content words must work for semigrammatical words too.

As we will see, this calls for a mode of composition that does not hinge
on the logical type of the grammatical category X in [X X √].

This poses an immediate problem for the coordination approach, as
we ideally want the logical type of the root node to be stable.

+ GRS requires us to think outside the “predicativist” box.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 14 / 45

Overview

1 Introduction

2 Challenges for formal semantics

3 Possible directions

4 A categorical model

5 Monad

6 Summary

Song 2021 (ZJU) On the semantics of root syntax LENLS18 15 / 45

Directions toward a compositional root semantics

Goals:
A category-neutral logical form template for all roots
A type-error-free unification of content and semifunctional words

Possibilities (¬–® from Song 2019, ¯–° new):
1 The conjunctivist approach
2 The type variable approach
3 The null denotation approach
4 The categorical logic approach
5 The monadic approach

GRS rules out ¬– and favors ®, of which ¯–° are improved versions.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 16 / 45

Possibility 1 (P1): The conjunctivist approach

Root: sort-generic predicate
Category: sorting predicate
Composition: conjunction (cf. Kelly 2013)

Example:
N λx : u.entity(x)∧ BOARD(x)≡λx : entity. BOARD(x)

n
λx : u.entity(x)

√BOARD

λx : u. BOARD(x)

Song 2021 (ZJU) On the semantics of root syntax LENLS18 17 / 45

u

entity event . . .

þ

set of all entities

þ

a sort-mixed set
defined by √BOARD

the entity-subset of J√BOARDKþ

Possibility 1 (P1): The conjunctivist approach

Root: sort-generic predicate
Category: sorting predicate
Composition: conjunction (cf. Kelly 2013)

Example:
V λx : u.event(x)∧ BOARD(x)≡λx : event. BOARD(x)

v
λx : u.event(x)

√BOARD

λx : u. BOARD(x)

Song 2021 (ZJU) On the semantics of root syntax LENLS18 17 / 45

u

entity event . . .

þ

set of all events

þ

a sort-mixed set
defined by √BOARD

the event-subset of J√BOARDKþ

Possibility 1 (P1): The conjunctivist approach

Root: sort-generic predicate
Category: sorting predicate
Composition: conjunction (cf. Kelly 2013)

Example:
V λx : u.event(x)∧ BOARD(x)≡λx : event. BOARD(x)

v
λx : u.event(x)

√BOARD

λx : u. BOARD(x)

Song 2021 (ZJU) On the semantics of root syntax LENLS18 17 / 45

u

entity event . . .

þ

set of all events

þ

a sort-mixed set
defined by √BOARD

the event-subset of J√BOARDKþ

+Requirement: X-√ type match
(first-order predicate)

þTailor-made for classical root syntax

Possibility 2 (P2): The type variable approach

Root: type-open predicate
Category: type
Composition: type-level application (Song 2019)

Example:
N λx : entity. BOARD(x)

n
entity

√BOARD

λα : ∗.λx : α. BOARD(x)

V λx : event. BOARD(x)

v
event

√BOARD

λα : ∗.λx : α. BOARD(x)

Song 2021 (ZJU) On the semantics of root syntax LENLS18 18 / 45

þ

type variable
(∗ is the “kind” of all types)

+Requirement: second-order λ-calculus
þsame result as P1, different means

(doesn’t require type match)

Possibility 2 (P2): The type variable approach

Root: type-open predicate
Category: type
Composition: type-level application (Song 2019)

Example (semigrammatical word):
Neg λx : t→t. ĐÉO(x)

Neg
t→t

√ĐÉO

λα : ∗.λx : α. ĐÉO(x)

Cl λx : (en→t)→en→t. WÈI(x)

Cl
(en→t)→en→t

√WÈI

λα : ∗.λx : α. WÈI(x)

Song 2021 (ZJU) On the semantics of root syntax LENLS18 18 / 45

þ

the classifier type
(simplified from Li 2013)Not a real solution to GRS!

(function words lose their functions)

Possibility 2 (P2): The type variable approach

Root: type-open predicate
Category: type
Composition: type-level application (Song 2019)

Example (semigrammatical word):
Neg λx : t→t. ĐÉO(x)

Neg
t→t

√ĐÉO

λα : ∗.λx : α. ĐÉO(x)

Cl λx : (en→t)→en→t. WÈI(x)

Cl
(en→t)→en→t

√WÈI

λα : ∗.λx : α. WÈI(x)

Song 2021 (ZJU) On the semantics of root syntax LENLS18 18 / 45

þ

the classifier type
(simplified from Li 2013)Not a real solution to GRS!

(function words lose their functions)

“Root-supported” or not,
function words should keep
their normal functionality.

Possibility 3 (P3): The null denotation approach

Root: no denotation
Category: normal denotation
Composition: none (cf. Acquaviva 2019)

This brings us back to a basic idea in DM:
[I]t is not clear that the computational system of language . . . must know whether
a node contains “dog” or “cat.” . . . [T]his different . . . is a matter of Encyclopedic
knowledge . . . [and] such knowledge is used in semantic interpretation of LF, but
not in grammatical computations over LF or involving LF. (Marantz 1995:4)

[The root is] an unanalyzable name, a label maximally underdetermined except for
the fact of being formally distinct from other names. (Acquaviva 2019:45)

Song 2021 (ZJU) On the semantics of root syntax LENLS18 19 / 45

Possibility 3 (P3): The null denotation approach

Root: no denotation
Category: normal denotation
Composition: none (cf. Acquaviva 2019)

Example:
N λx : u.entity(x)

n
λx : u.entity(x)

√BOARD

Neg λp : t.¬p

Neg
λp : t.¬p

√ĐÉO

Cl λP : en→t.λx : en.x∈At(P)

Cl
λP : en→t.λx : en.x∈At(P)

√WÈI

Song 2021 (ZJU) On the semantics of root syntax LENLS18 19 / 45

Possibility 3 (P3): The null denotation approach

Root: no denotation
Category: normal denotation
Composition: none (cf. Acquaviva 2019)

Example:
N λx : u.entity(x)

n
λx : u.entity(x)

√BOARD

Neg λp : t.¬p

Neg
λp : t.¬p

√ĐÉO

Cl λP : en→t.λx : en.x∈At(P)

Cl
λP : en→t.λx : en.x∈At(P)

√WÈI

The status of the root in this approach resembles that of a modifier.
. . . though not a logical one
This “modification” only takes effect when the LF itself is interpreted.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 19 / 45

Possibility 3 (P3): The null denotation approach

Root: no denotation
Category: normal denotation
Composition: none (cf. Acquaviva 2019)

Example:
N λx : u.entity(x)

n
λx : u.entity(x)

√BOARD

Neg λp : t.¬p

Neg
λp : t.¬p

√ĐÉO

Cl λP : en→t.λx : en.x∈At(P)

Cl
λP : en→t.λx : en.x∈At(P)

√WÈI

The status of the root in this approach resembles that of a modifier.
. . . though not a logical one
This “modification” only takes effect when the LF itself is interpreted.

P3 truly unifies classical and generalized root syntax, but it totally ignores the
root and nullifies our goal of a compositional semantics for root syntax.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 19 / 45

New contribution: Two improved versions of P3

P4: a categorical model
Suppose the universe of discourse still contain dogs, cats, eating events, etc.,
that we cannot readily reference them in a suitable model of root syntax (C2)
makes their supersort(s) “opaque.” And our task is exactly to reconstruct
sortal predicates in such an opaque setting. This is reminiscent of how things
are done in category theory, where objects are opaque by definition.

P5: composition via monad
Our concern as a whole is reminiscent of the “at-issue” (truth-conditional) vs.
“side-issue” (non-truth-conditional) distinction in Asudeh & Giorgolo (2020),
where composition of meanings in these two dimensions is implemented via
the category-theoretic notion monad.

Overall, P4–5 highlight the usefulness of category theory in linguistics.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 20 / 45

Overview

1 Introduction

2 Challenges for formal semantics

3 Possible directions

4 A categorical model

5 Monad

6 Summary

Song 2021 (ZJU) On the semantics of root syntax LENLS18 21 / 45

Possibility 4 (P4): The categorical logic approach

Idea
We can try to lift the usual set-theoretic model in formal semantics to a
category-theoretic one and see what it does to root syntax.

natural language syntax Ù logical syntax
(λ-calculus)

Ù set structure

There already exists a categorical semantics for λ-calculus (Crole 1993,
Pitts 2000), so we can build on that.

Types are interpreted as objects.
Terms are interpreted as morphisms.

In the category Set, the objects are opaque sets and the morphisms are
total functions—just what we need.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 22 / 45

Possibility 4 (P4): The categorical logic approach

Idea
We can try to lift the usual set-theoretic model in formal semantics to a
category-theoretic one and see what it does to root syntax.

natural language syntax Ù logical syntax
(λ-calculus)

Ù set structure

There already exists a categorical semantics for λ-calculus (Crole 1993,
Pitts 2000), so we can build on that.

Types are interpreted as objects.
Terms are interpreted as morphisms.

In the category Set, the objects are opaque sets and the morphisms are
total functions—just what we need.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 22 / 45

Ø categorical structure

Possibility 4 (P4): The categorical logic approach

Idea
We can try to lift the usual set-theoretic model in formal semantics to a
category-theoretic one and see what it does to root syntax.

natural language syntax Ù logical syntax
(λ-calculus)

Ù set structure

There already exists a categorical semantics for λ-calculus (Crole 1993,
Pitts 2000), so we can build on that.

Types are interpreted as objects.
Terms are interpreted as morphisms.

In the category Set, the objects are opaque sets and the morphisms are
total functions—just what we need.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 22 / 45

Ø categorical structure

The categorical setting of Set

In category theory, a category C is defined by
a collection of objects A,B,C, . . . (which are opaque)
a collection of morphisms f,g,h, . . . between objects (including an
identity morphism 1A for each object A), and
morphism composition (obeying associativity and unit law)

A B C D
f g

1B

h

h ◦ (g ◦ f) = (h ◦ g) ◦ f

1B ◦ f = f,g ◦ 1B = g

In Set, objects are sets, morphisms are functions, and morphism
composition is function composition.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 23 / 45

The categorical setting of Set

In addition, Set has categorified versions of
1 cartesian products Ù product objects A× B,A× B× C, . . .

2 singleton sets Ù a terminal object 1 such that ∀C∃C !C−→ 1
3 set elements Ù via “global elements” of the form 1 a−→ A for any a ∈ A
4 function spaces Ù exponential objects BA,CB

A

, . . .

5 the subset relation Ù via a subobject classifier 1 true−−−→ Ω = {true, false}

¬¯ make Set a cartesian closed category, and ¬¯° make it a topos.

+Set has abundant good features for our “root syntax experiment.”

Song 2021 (ZJU) On the semantics of root syntax LENLS18 24 / 45

Possibility 4 (P4): The categorical logic approach

To translate root syntax into logical syntax, we only need a tiny bit of
modification to the usual λ-calculus signature (Crole 1993):

Our ground types include the generic sort u and its subsorts (e.g.,
entity, event), the type t of truth values, and a type r for roots.

The model in Set is also quite straightforward.
We give every ground type γ a Set-object JγK, specifically an object for
each sort, an objectΩ for t, and an object R for r.
Unit, product, and function types are modeled in their usual ways (as
terminal, product, and exponential objects).

We can let each root denote a constant of type r and translate [X X √]
as 〈JXK, J√K〉. It has the type α× r, where α is the semantic type of X.
That is, we view root categorization simply as a pairing procedure,
with the root serving as a “tag name” for the grammatical category.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 25 / 45

Possibility 4 (P4): The categorical logic approach

To translate root syntax into logical syntax, we only need a tiny bit of
modification to the usual λ-calculus signature (Crole 1993):

Our ground types include the generic sort u and its subsorts (e.g.,
entity, event), the type t of truth values, and a type r for roots.

The model in Set is also quite straightforward.
We give every ground type γ a Set-object JγK, specifically an object for
each sort, an objectΩ for t, and an object R for r.
Unit, product, and function types are modeled in their usual ways (as
terminal, product, and exponential objects).

We can let each root denote a constant of type r and translate [X X √]
as 〈JXK, J√K〉. It has the type α× r, where α is the semantic type of X.
That is, we view root categorization simply as a pairing procedure,
with the root serving as a “tag name” for the grammatical category.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 25 / 45

Possibility 4 (P4): The categorical logic approach

To translate root syntax into logical syntax, we only need a tiny bit of
modification to the usual λ-calculus signature (Crole 1993):

Our ground types include the generic sort u and its subsorts (e.g.,
entity, event), the type t of truth values, and a type r for roots.

The model in Set is also quite straightforward.
We give every ground type γ a Set-object JγK, specifically an object for
each sort, an objectΩ for t, and an object R for r.
Unit, product, and function types are modeled in their usual ways (as
terminal, product, and exponential objects).

We can let each root denote a constant of type r and translate [X X √]
as 〈JXK, J√K〉. It has the type α× r, where α is the semantic type of X.
That is, we view root categorization simply as a pairing procedure,
with the root serving as a “tag name” for the grammatical category.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 25 / 45

Possibility 4 (P4): The categorical logic approach

How does P4 resolve the four challenges?
1 How to logically represent roots?

As constants of type r.
2 How to mirror the extreme vagueness of roots in the model?

By not giving them set-theoretic extensions. Instead, each root qua a
constant is modeled by a global element 1→ R in Set. Similarly, each
idiosyncratic sorting predicate is modeled by a morphism from its

sort-object toΩ (e.g., JdogK = JentityK dog−−→ Ω).
3 How to compose roots and categories?

By product formation in Set, which is a categorified version of the
conjunctivist approach but free from the type match constraint.

4 How to keep up with generalized root syntax?
Since there is no type match constraint, the product-based composition
is uniformly applicable to content and semigrammatical words.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 26 / 45

Possibility 4 (P4): The categorical logic approach

Example (suppose little x categories denote sorts):
N〈entity, BOARD〉þ 〈idJentityK, BOARD〉

n
entity

JentityK

√BOARD

BOARD

1
BOARD−−−−→JrK

JboardK=JentityK
board−−−→Ω

There is a one-one correspondence between morphisms JentityK→ Ω

and pairs 〈idJentityK, J√K〉 for each viable √ (similarly for other types).

Song 2021 (ZJU) On the semantics of root syntax LENLS18 27 / 45

two ways to model the bare noun board

Ôvia root syntax

Ô
not via root syntax

Possibility 4 (P4): The categorical logic approach

Example (suppose little x categories denote sorts):
N〈entity, BOARD〉þ 〈idJentityK, BOARD〉

n
entity

JentityK

√BOARD

BOARD

1
BOARD−−−−→JrK

JboardK=JentityK
board−−−→Ω

There is a one-one correspondence between morphisms JentityK→ Ω

and pairs 〈idJentityK, J√K〉 for each viable √ (similarly for other types).

Song 2021 (ZJU) On the semantics of root syntax LENLS18 27 / 45

two ways to model the bare noun board

Ôvia root syntax

Ô
not via root syntax

Possibility 4 (P4): The categorical logic approach

More generally, the root categorization schema [X X √] gives rise to an
isomorphism between two sets of morphisms:

{idJαK}×Hom(1,R) � Hom(JαK,Ω)

which “naturally” holds in our model however JαK (i.e., X) varies.
(The hom-set Hom(A,B) is the set of all morphisms A→ B.)

This could potentially be extended to a natural isomorphism:

Set Set

id(−)×Hom(1,R)

Hom(−,Ω)

θ

But I will not further discuss that here.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 28 / 45

Possibility 4 (P4): The categorical logic approach

Another way to bear out the bijection is via a topos pullback

〈idJentityK, J√BOARDK〉 JentityK

1 Ω

u

!
χ〈idJentityK ,J√BOARDK〉

true

which basically classifies 〈idJentityK, J√BOARDK〉 as a subtype of entity.
(I use the same notation 〈idJentityK, J√BOARDK〉 to represent the idiosyncratic
set the categorized root corresponds to.)

So, we actually have a three-way correspondence in the model:

morphisms like JentityK board−−−→ Ω (characteristic functions)↔

morphism pairs like 〈idJentityK, J√BOARDK〉 (root categorization)↔

independent objects like Board (lifted extension sets)

Song 2021 (ZJU) On the semantics of root syntax LENLS18 29 / 45

Possibility 4 (P4): The categorical logic approach

This pullback can be extended to semigrammatical words too.

〈idJt→tK, J√ĐÉOK〉 Jt→ tK

1 Ω

u

!
χ〈idJt→tK ,J√ĐÉOK〉

true

which classifies 〈idJt→tK, J√ĐÉOK〉 as a subtype of Jt→ tK.
(Here we must understand the characteristic function in a different way—not
as a characterization of individuals but as one of negation forces.)

Overall, this pullback is not as intuitively natural as the previous one, as the
negator đéo that 〈idJt→tK, J√ĐÉOK〉 corresponds to does not have a
ground-level extension. (Maybe we need a more general category here?)

Song 2021 (ZJU) On the semantics of root syntax LENLS18 30 / 45

Overview

1 Introduction

2 Challenges for formal semantics

3 Possible directions

4 A categorical model

5 Monad

6 Summary

Song 2021 (ZJU) On the semantics of root syntax LENLS18 31 / 45

Possibility 5 (P5): The monadic approach

Asudeh & Giorgolo (2020) use monads to compose Potts’s (2005, 2007)
“at-issue” (truth-conditional) and “side-issue” (non-truth-conditional)
meanings. P5 is based on their treatment of conventional implicature.

(3) a. Donald is a Yank.

b. This cur bit me. (Asudeh & Giorgolo 2020:13)

Words like Yank and cur carry speaker attitudes besides their basic
meanings. A&G view these as conventional, non-truth-conditional.

+This is highly similar to what we see in semigrammatical items.

To further generalize the idea, the purely idiosyncratic meanings of
content words are also conventionalized (i.e., lexicalized). Their roots,
too, are modifiers of the grammatical/logical structure.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 32 / 45

Possibility 5 (P5): The monadic approach

Idea
Let logical computation proceed as usual and store idiosyncratic,
conventional meanings in a “log” area of the computation. The monad
tool keeps track of the two semantic dimensions in one big function.

Monad is a highly general concept in category theory, but the particular
monad A&G use, the writer monad, is from functional programming.

[T]he writer monad [is] used for logging or tracing the execution of functions. It’s
also an example of a more general mechanism for embedding [side] effects in pure
computations. (Milewski 2019:49)

type Writer a = (a , String)

Song 2021 (ZJU) On the semantics of root syntax LENLS18 33 / 45

þ

any type

þ creates a “log” area for a type and “writes” a string into it

This extends to an endofunctor on the category of types.
— Objects: types | Morphisms: a −> Writer b

— Composition: (>=>) :: (a −> Writer b) −> (b −> Writer c) −> (a −> Writer c)

Possibility 5 (P5): The monadic approach

Basically, a monad is such an endofunctor together with two natural
transformations, respectively called unit (η) and multiplication (µ),
which satisfy the associativity and unit laws. For the writer monad, we
need a further operator bind (>>=), which can be defined by µ.

In the case of the writer monad:
η(x) = 〈x,e〉 : a→Writer a embeds a value in a trivial wrapper (e is the empty string)

µ〈〈x,s1〉,s2〉 = 〈x,s1 ++ s2〉 : Writer (Writer a)→ Writer a
combines log entries by concatenation (s1 and s2 are strings) þso the log slot relies on a monoid

〈x,s1〉 >>= λu.〈f(u),s2〉 = µ((λ〈u,s〉.〈〈f(u),s2〉,s〉)〈x,s1〉)
= µ〈(f(x),s2〉,s1〉 = 〈f(x),s2 ++ s1〉
: Writer a→ (a→ Writer b)→ Writer b pure function and logging proceed in parallel

+Equivalent definitions: 〈Writer,η,µ〉 ≡ 〈Writer,η, >>=〉
(Remember that Writer is a functor.)

Song 2021 (ZJU) On the semantics of root syntax LENLS18 34 / 45

Possibility 5 (P5): The monadic approach

Example: Donald is a Yank. (Asudeh & Giorgolo 2020:55ff.)
At-issue: Donald is an American.
Side-issue: The speaker has a negative attitude toward Americans.

The negative attitude is encoded in Yank, so
Yank should have a monad-type denotation, and
it should be composed with other ingredients monadically.

Specifically,
JYankK = write(p) >>= λy.η(American) = 〈American, {p}〉
JYankK >>= λx.η(JaK(JisK(x))(JDonaldK)) = JYankK >>= λx.η(x(Donald))
= 〈American, {p}〉 >>= λx. 〈x(Donald), ∅〉 = 〈American(Donald), ∅ ∪ {p}〉

Song 2021 (ZJU) On the semantics of root syntax LENLS18 35 / 45

Úcall this p
Úthis helper function wraps p in a dummy monadic term 〈1, {p}〉

here µworks by set unionÚ

(the monoid is the power set of the set of all propositions)

Possibility 5 (P5): The monadic approach

We can directly apply A&G’s writer monad to root syntax, with one
small modification—it is not enough to simply let root information pile
up in the log area; we need to record which root tags which category.

Let’s begin with the schema [X X √]. I assign it the logical form

write(X√) >>= λy.η(JXK)

which writes {X√} into the log slot of a vacuous monadic term.

Example:
Content word: J[N n √BOARD]K = write(n√BOARD) >>= λy.ηJnK = 〈JnK, {n√BOARD}〉
(an entity that is idiosyncratically characterized by √BOARD)

Semigrammatical word:
J[Neg Neg √ĐÉO]K = write(Neg√ĐÉO) >>= λy.ηJNegK = 〈JNegK, {Neg√ĐÉO}〉
(a negator that is idiosyncratically characterized by √ĐÉO)

Song 2021 (ZJU) On the semantics of root syntax LENLS18 36 / 45

Possibility 5 (P5): The monadic approach

How does P5 resolve the four challenges?
1 How to logically represent roots?

Roots need no logical denotations (as in P3), since they do not
participate in “at-issue” computation.

2 How to mirror the extreme vagueness of roots in the model?
Not clear yet, as we have only focused on the LF level (so do A&G).

3 How to compose roots and categories?
Via the monadic >>=.

4 How to keep up with generalized root syntax?
As in P4, the composition mode here is uniformly applicable to content
and semigrammatical words.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 37 / 45

Possibility 5 (P5): The monadic approach

The logging does not interfere with “at-issue” computation.
Recall that in P2 the root-categorizer composition messes up the
grammatical category’s normal functionality.
There’s no such trouble in P5 thanks to the definition of >>=.

Example: wǔ duǒ huā ‘five CLF flower; five flowers’ (simplified from Li 2013)
NumP〈JNumK(JClK(JnK)),{Cl√D

, n√H
}〉�(JNK >>=λu.η〈(π1JCl√K)u,π2JCl√K〉) >>=λw.η(JNumKw)

Num
5

λQλz.∗Q(z)∧|z|=5

(* is pluralization)

ClP 〈JClK(JnK), {Cl√DUǑ
, n√HUĀ

}〉

Cl 〈JClK, {Cl√DUǑ
}〉

Cl
λPλx.x∈Atom(P)

(Cl performs atomization)

√DUǑ

N 〈JnK, {n√HUĀ
}〉

n
λy.entity(y)

√HUĀ

Song 2021 (ZJU) On the semantics of root syntax LENLS18 38 / 45

Ú(a plural entity with cardinality 5; it is idiosyncratically
characterized by √HUĀ, and its atomic unit, by √DUǑ)

Possibility 5 (P5): The monadic approach

The logging does not interfere with “at-issue” computation.
Recall that in P2 the root-categorizer composition messes up the
grammatical category’s normal functionality.
There’s no such trouble in P5 thanks to the definition of >>=.

Example: Mary walks (based on Bowers 2010, via Lohndal 2019)
VoiceP 〈(JVoiceK(JvK))JMaryK, {v√WALK

}〉
�

(JVK >>= λz.η(JVoiceKz)) >>= λw.η(w(JMaryK))

DP
Mary

VoiceP 〈JVoiceK(JvK), {v√WALK
}〉

Voice
λPλyλx. [P(x)∧Agent(x,y)]

(Voice introduces Agent)

V 〈JvK, {v√WALK
}〉

v
λx.event(x)

√WALK

Song 2021 (ZJU) On the semantics of root syntax LENLS18 38 / 45

Ú(an event whose Agent is Mary; it is idiosyncratically characterized by √WALK)

Due to the upward continuation of monadic
computation, P5 has global ramifications for
semantic composition (as in A&G’s work).

Overview

1 Introduction

2 Challenges for formal semantics

3 Possible directions

4 A categorical model

5 Monad

6 Summary

Song 2021 (ZJU) On the semantics of root syntax LENLS18 39 / 45

Summary

Four challenges of (generalized) root syntax for formal semantics:
C1 How to logically represent roots?
C2 How to mirror the extreme vagueness of roots in the model?
C3 How to compose roots and categories?
C4 How to keep up with generalized root syntax?

Five possible directions:
P1 The conjunctivist approach 7

P2 The type variable approach 7

P3 The null denotation approach 4

P4 The categorical logic approach 4

P5 The monadic approach 4

Next step: (i) a model for P5; (ii) potential combination of P4–5.

Song 2021 (ZJU) On the semantics of root syntax LENLS18 40 / 45

Thank you!

Song 2021 (ZJU) On the semantics of root syntax LENLS18 41 / 45

Selected references I

Acedo-Matellán, V. & C. Real-Puigdollers
Roots into functional nodes: Exploring locality and semi-lexicality
The Linguistic Review 36(3), 411–436, 2019

Acquaviva, P.
Roots and lexicality in distributed morphology
YPL2 special issue, 2009

Acquaviva, P.
Categorization as noun construction
Gender and noun classification
OUP, 2019

Asudeh, A. & G. Giorgolo
Enriched meanings
OUP, 2020

Song 2021 (ZJU) On the semantics of root syntax LENLS18 42 / 45

Selected references II

Borer, H.
Structuring sense: In name only (Vol. 1)
OUP, 2005

Chomsky, N.
UCLA lectures (https://linguistics.ucla.edu/noam-chomsky/)
Apr 29–May 2, 2019

Crole, R.
Categories for types
CUP, 1993

Halle, M. & A. Marantz
Some key features of distributed morphology
MIT working papers in linguistics 21, 275–288, 1993

Song 2021 (ZJU) On the semantics of root syntax LENLS18 43 / 45

https://linguistics.ucla.edu/noam-chomsky/

Selected references III

Kelly, J.
The syntax-semantics interface in distributed morphology
Georgetown University dissertation, 2013

Milewski, B.
Categories theory for programmers
Blurb, 2019

Pitts, A.
Categorical logic
Handbook of logic in computer science (Vol. 5)
OUP, 2000

Potts, C.
The logic of conventional implicatures
OUP, 2005

Song 2021 (ZJU) On the semantics of root syntax LENLS18 44 / 45

Selected references IV

Song, C.
On the formal flexibility of syntactic categories
University of Cambridge dissertation, 2019

Song, C.
A typology of semilexicality and the locus of grammatical
variation (https://youtu.be/2X0-LODELfc)
Talk at ICFL9, 2021

Song 2021 (ZJU) On the semantics of root syntax LENLS18 45 / 45

https://youtu.be/2X0-LODELfc

	Introduction
	Challenges for formal semantics
	Possible directions
	A categorical model
	Monad
	Summary

